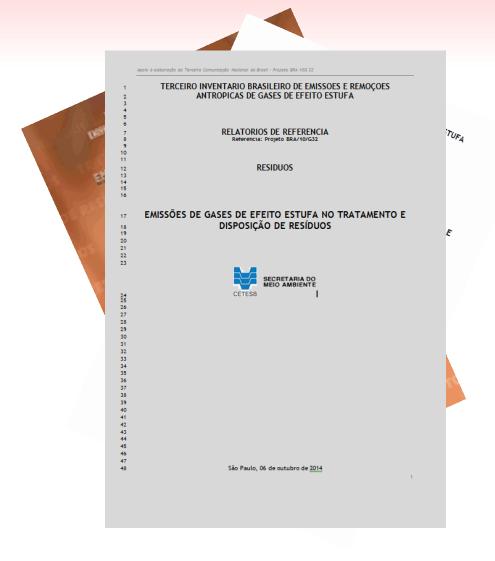


XIII Simpósio de biossegurança e descartes de produtos químicos e perigosos e organismos geneticamente modificados (OGM) em instituições de ensino e pesquisa

Biogás e biodigestores para a geração de energia sustentável

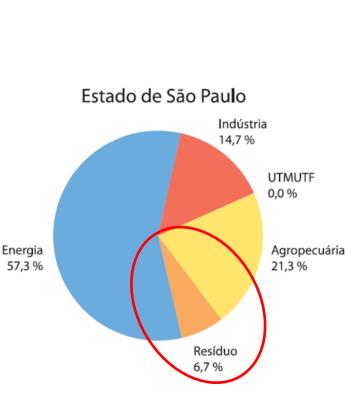
04 de dezembro de 2014

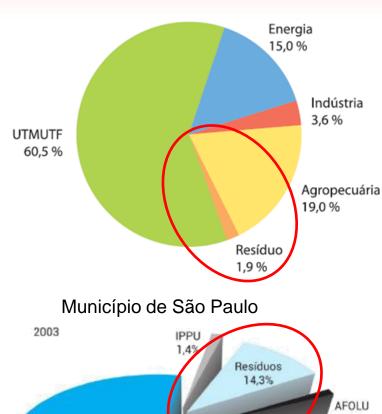
Biogás


- Produzido pela ação de bactérias na ausência de oxigênio;
 - Aterros sanitários;
 - Estações de tratamento anaeróbio de efluentes;
- Composição:
 - Aterros sanitários: 50% a 60% CH₄; 50 a 40% CO₂; 1% outros (umidade, siloxinas);
 - ETE: 60 a 80% CH₄; 35 a 15% CO₂; 5% outros (S²; umidade);

Vantagens pelo uso do biogás

- Energética
 - Redução das necessidades de importação;
 - Geração descentralizada de eletricidade;
- Ambiental
 - Diminui a emissão de gases de efeito estufa;
 - Reduz o uso de combustíveis fósseis e suas emissões
- Sanitária
 - Incentiva as boas práticas;
- Econômica
 - Gera emprego, renda, impostos,
 - Créditos de carbono.





A fração de GEE dos resíduos

www.mct.gov.br/clima www.cetesb.sp.gov.br/biogas www.capital.sp.gov.br

5 de 49

Energia 84,2%

- Emissões de CH₄, em 2010, no BR, são superiores a 2milhões_t.ano⁻¹.
- Equivalente a 1,2GWe
- BR Total (instalado) 86GWe, Eólica 2,2GWe (2,6%) / Nuclear 1,9GWe
- Biogás = 1,1% da potência elétrica nacional potencial. Hoje 40MWe ±10
- Em ETE pode suprir de 30 a 100% das necessidades energéticas.
- Em aterros permite a venda da energia para a vizinhança (fim de rede) e clientes interligados à rede.

Grandes aterros de resíduos sólidos urbanos

CETESB, 2004

Aterros de resíduos sólidos urbanos com destruição do CH₄

CETESB, 2008

Aterros de resíduos sólidos urbanos com destruição do CH₄

CETESB, 2008

Geração de biogás por resíduos

Banco Mundial e CETESB, 2010

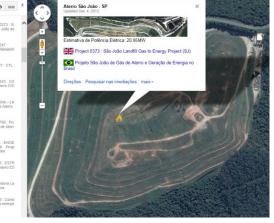
Geração de biogás por resíduos

Banco Mundial e CETESB, 2010

Projetos de MDL de destruição do CH₄

CETESB, 2014

Projetos de MDL de destruição do CH₄


CETESB, 2014

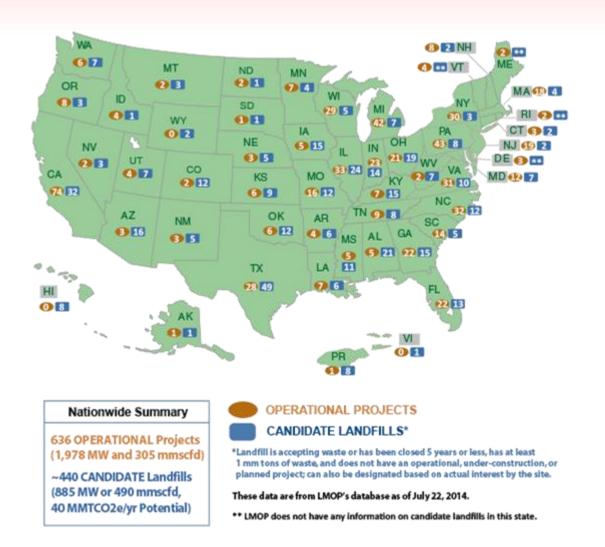
CETESB, 2014

Projetos de MDL de destruição do CH₄

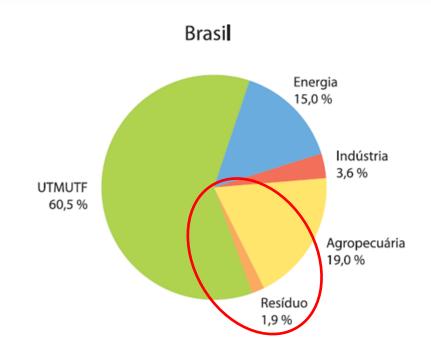
CETESB, 2004

CETESB, 2014

www.cetesb.sp.gov.br/biogas



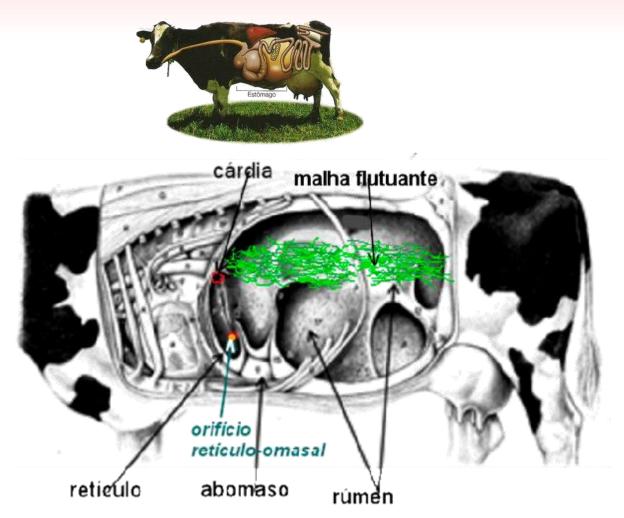
Disposição do resíduo no solo



Disposição do resíduo no solo nos EUA

A fração de GEE dos resíduos

www.mct.gov.br/clima



Produção do biogás

Produção do biogás

Digestor pistolado horizontal

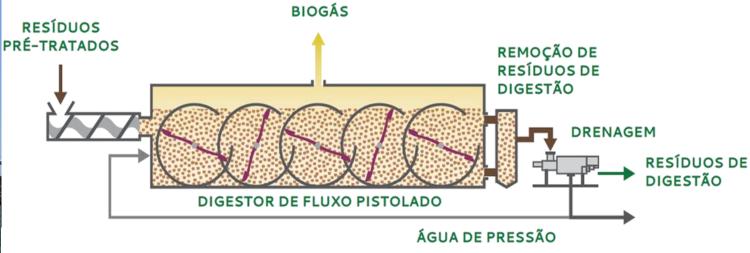
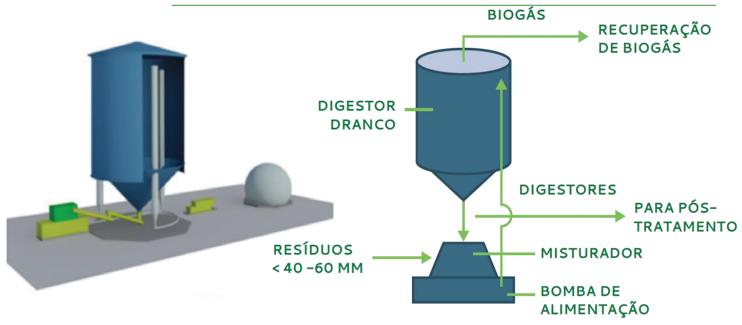


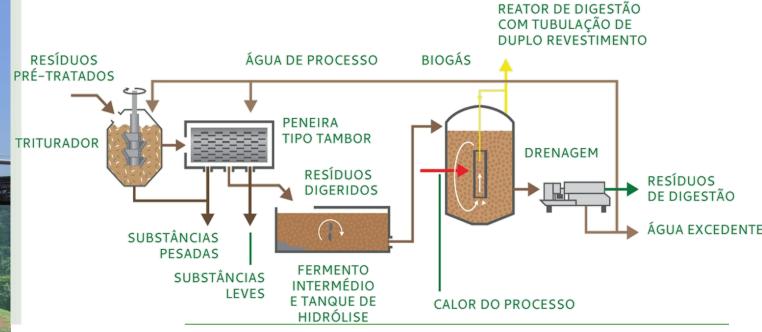
Figura 2-12: Estrutura do digestor de fluxo pistonado LARAN®

Fonte: © STRABAG-Umweltanlagen

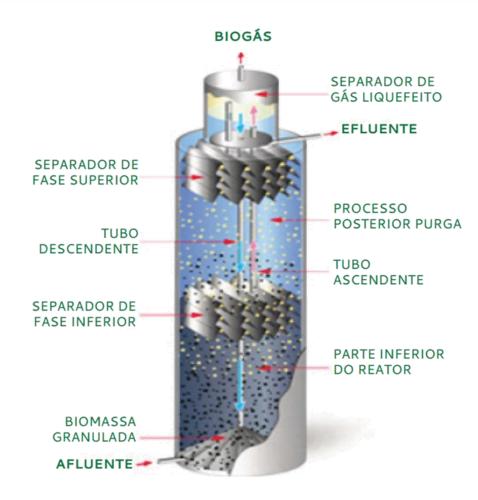


Digestor tipo garagem

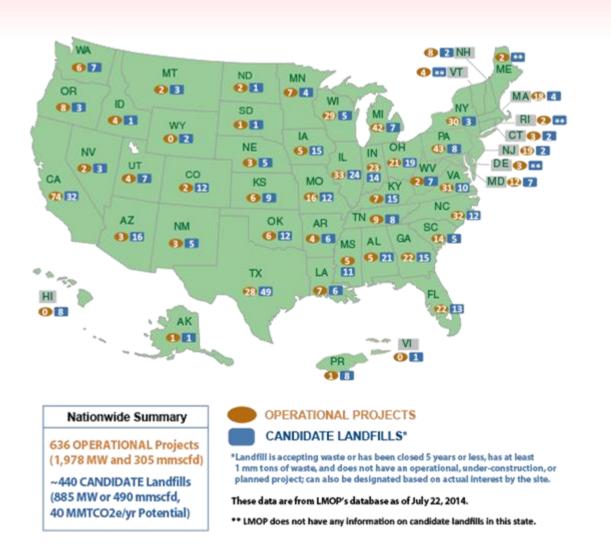
Digestor pistolado vertical



Digestor pistolado vertical



Processo úmido



RAFA

Disposição do resíduo no solo nos EUA

Tratamento de resíduo na Alemanha

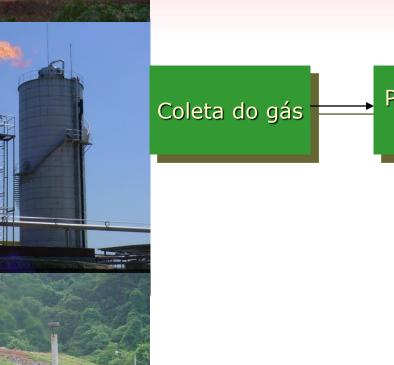
800 ETE anaeróbias

87 plantas de biodigestão de RSU em junho de 2012

7600 plantas de biogás no campo

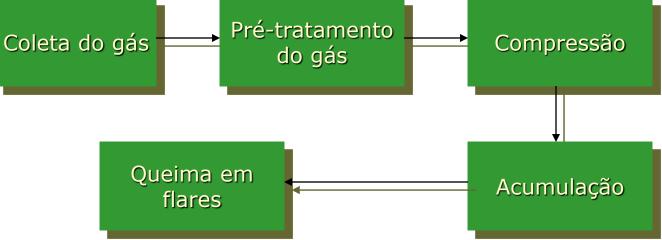
39 plantas em construção e outras 63 planejadas (2012)

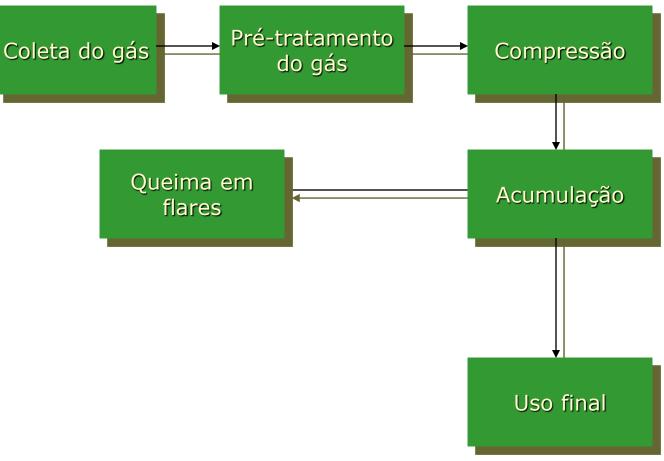
Coleta do gás



Pré-tratamento do gás

Compressão





Usos do biogás

- O biogás rico em CH₄ pode ser utilizado como fonte energética similar ao gás natural.
 - urbano;
 - residencial;
 - industrial.
- São possíveis diferentes alternativas de geração:
 - eletricidade;
 - calor;
 - mecânica estacionária;
 - mecânica veicular;
 - iluminação;
 - cogeração.

Eletricidade

 Geração elétrica com grupo gerador nacional

> A partir de 5kW, bloco Otto 30kW - R\$21.000 Vida útil de 6 meses ou 5.000h.

A partir de 60kW, bloco Diesel 60kW - R\$64.000 200kW - R\$280.000 Vida útil de 1 ano ou 10.000h

Eletricidade

 Geração elétrica com grupo gerador importado

> A partir de bloco gás 900kW - R\$280.000

Vida útil de 5 a 11 anos ou 50.000 a 100.000h.

Custo da energia 15% inferior para o autogerador (UNIBANCO)

Eletricidade

- Demandas elétricas locais:
 - Iluminação interna;

Eletricidade

- Demandas elétricas locais:
 - Iluminação interna;
 - Tratamento de resíduos hospitalares com microondas;

Eletricidade

- Demandas elétricas locais:
 - Iluminação interna;
 - Tratamento de resíduos hospitalares com microondas;
 - Tratamento do chorume em lagoas aeradas;

Eletricidade

- Demandas elétricas locais:
 - Iluminação interna;
 - Tratamento de resíduos hospitalares com microondas;
 - Tratamento do chorume em lagoas aeradas;
 - Balança de controle de caminhões;

Eletricidade

- Demandas elétricas locais:
 - Iluminação interna;
 - Tratamento de resíduos hospitalares com microondas;
 - Tratamento do chorume em lagoas aeradas;
 - Balança de controle de caminhões;
 - Balcões de triagem de resíduos;

Eletricidade

- Vendas de eletricidade para a rede de distribuição
- Autogeração e distribuição para diferentes pontos espalhados pelo país através da rede interligada.

Eletricidade luz

- Demandas de iluminação:
 - Iluminação externa;

Válvulas de controle de fluxo de gás; Eletrônica de acendimento automático; Célula fotoelétrica; Sensor de presença; Temporizador;

Sensores de vazamento de gás; Sensores de calor;

41 de 49

Substituição de GLP

Demandas por gás:

Calor

- Demandas de calor locais:
 - Geração de vapor ou água quente em caldeiras;

Calor

- Demandas de calor locais:
 - Geração de vapor ou água quente em caldeiras;
 - Tratamento de resíduos hospitalares por autoclave;

Evaporação de chorume

 Sistema de evaporação de chorume e queima de vapores;

Venda de biogás para a vizinhança

Venda de biogás para a indústria

Venda de biogás para a vizinhança

 Venda de biogás para residências

Venda de biogás para a vizinhança

 Venda de biogás para outras atividades

Contato e informações

João Wagner Silva Alves
CETESB
Av. Frederico Hermann Jr. 345, Pinheiros, São Paulo, SP

Av. Frederico Hermann Jr. 345, Pinheiros, Sao Paulo, SP Tel.: +11 3133 6157

IEE – Instituto de Energia e Ambiente - USP PIPGE – Programa Interunidades de Pós graduação em Energia Doutorado – Professor Adnei Melges de Andrade (2015/6) Mestrado – Professor Ildo Sauer (2000)

ignormalized in the property of the property o